3.1.24 \(\int (c e+d e x) (a+b \tanh ^{-1}(c+d x))^3 \, dx\) [24]

Optimal. Leaf size=160 \[ \frac {3 b e \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}+\frac {3 b e (c+d x) \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}-\frac {e \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}-\frac {3 b^2 e \left (a+b \tanh ^{-1}(c+d x)\right ) \log \left (\frac {2}{1-c-d x}\right )}{d}-\frac {3 b^3 e \text {PolyLog}\left (2,-\frac {1+c+d x}{1-c-d x}\right )}{2 d} \]

[Out]

3/2*b*e*(a+b*arctanh(d*x+c))^2/d+3/2*b*e*(d*x+c)*(a+b*arctanh(d*x+c))^2/d-1/2*e*(a+b*arctanh(d*x+c))^3/d+1/2*e
*(d*x+c)^2*(a+b*arctanh(d*x+c))^3/d-3*b^2*e*(a+b*arctanh(d*x+c))*ln(2/(-d*x-c+1))/d-3/2*b^3*e*polylog(2,(-d*x-
c-1)/(-d*x-c+1))/d

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {6242, 12, 6037, 6127, 6021, 6131, 6055, 2449, 2352, 6095} \begin {gather*} -\frac {3 b^2 e \log \left (\frac {2}{-c-d x+1}\right ) \left (a+b \tanh ^{-1}(c+d x)\right )}{d}+\frac {3 b e \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}+\frac {3 b e (c+d x) \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}-\frac {e \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}-\frac {3 b^3 e \text {Li}_2\left (-\frac {c+d x+1}{-c-d x+1}\right )}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)*(a + b*ArcTanh[c + d*x])^3,x]

[Out]

(3*b*e*(a + b*ArcTanh[c + d*x])^2)/(2*d) + (3*b*e*(c + d*x)*(a + b*ArcTanh[c + d*x])^2)/(2*d) - (e*(a + b*ArcT
anh[c + d*x])^3)/(2*d) + (e*(c + d*x)^2*(a + b*ArcTanh[c + d*x])^3)/(2*d) - (3*b^2*e*(a + b*ArcTanh[c + d*x])*
Log[2/(1 - c - d*x)])/d - (3*b^3*e*PolyLog[2, -((1 + c + d*x)/(1 - c - d*x))])/(2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 6021

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTanh[c*x^n])^p, x] - Dist[b
*c*n*p, Int[x^n*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p
, 0] && (EqQ[n, 1] || EqQ[p, 1])

Rule 6037

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTanh[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rule 6055

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Dist[b*c*(p/e), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c^
2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6095

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6127

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[f^2
/e, Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p, x], x] - Dist[d*(f^2/e), Int[(f*x)^(m - 2)*((a + b*ArcTanh[c*x])
^p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]

Rule 6131

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rule 6242

Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[(f*(x/d))^m*(a + b*ArcTanh[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f,
 0] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int (c e+d e x) \left (a+b \tanh ^{-1}(c+d x)\right )^3 \, dx &=\frac {\text {Subst}\left (\int e x \left (a+b \tanh ^{-1}(x)\right )^3 \, dx,x,c+d x\right )}{d}\\ &=\frac {e \text {Subst}\left (\int x \left (a+b \tanh ^{-1}(x)\right )^3 \, dx,x,c+d x\right )}{d}\\ &=\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}-\frac {(3 b e) \text {Subst}\left (\int \frac {x^2 \left (a+b \tanh ^{-1}(x)\right )^2}{1-x^2} \, dx,x,c+d x\right )}{2 d}\\ &=\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}+\frac {(3 b e) \text {Subst}\left (\int \left (a+b \tanh ^{-1}(x)\right )^2 \, dx,x,c+d x\right )}{2 d}-\frac {(3 b e) \text {Subst}\left (\int \frac {\left (a+b \tanh ^{-1}(x)\right )^2}{1-x^2} \, dx,x,c+d x\right )}{2 d}\\ &=\frac {3 b e (c+d x) \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}-\frac {e \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}-\frac {\left (3 b^2 e\right ) \text {Subst}\left (\int \frac {x \left (a+b \tanh ^{-1}(x)\right )}{1-x^2} \, dx,x,c+d x\right )}{d}\\ &=\frac {3 b e \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}+\frac {3 b e (c+d x) \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}-\frac {e \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}-\frac {\left (3 b^2 e\right ) \text {Subst}\left (\int \frac {a+b \tanh ^{-1}(x)}{1-x} \, dx,x,c+d x\right )}{d}\\ &=\frac {3 b e \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}+\frac {3 b e (c+d x) \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}-\frac {e \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}-\frac {3 b^2 e \left (a+b \tanh ^{-1}(c+d x)\right ) \log \left (\frac {2}{1-c-d x}\right )}{d}+\frac {\left (3 b^3 e\right ) \text {Subst}\left (\int \frac {\log \left (\frac {2}{1-x}\right )}{1-x^2} \, dx,x,c+d x\right )}{d}\\ &=\frac {3 b e \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}+\frac {3 b e (c+d x) \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}-\frac {e \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}-\frac {3 b^2 e \left (a+b \tanh ^{-1}(c+d x)\right ) \log \left (\frac {2}{1-c-d x}\right )}{d}-\frac {\left (3 b^3 e\right ) \text {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1-c-d x}\right )}{d}\\ &=\frac {3 b e \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}+\frac {3 b e (c+d x) \left (a+b \tanh ^{-1}(c+d x)\right )^2}{2 d}-\frac {e \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )^3}{2 d}-\frac {3 b^2 e \left (a+b \tanh ^{-1}(c+d x)\right ) \log \left (\frac {2}{1-c-d x}\right )}{d}-\frac {3 b^3 e \text {Li}_2\left (1-\frac {2}{1-c-d x}\right )}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.76, size = 213, normalized size = 1.33 \begin {gather*} \frac {e \left (6 b^2 (-1+c+d x) (b+a (1+c+d x)) \tanh ^{-1}(c+d x)^2+2 b^3 \left (-1+c^2+2 c d x+d^2 x^2\right ) \tanh ^{-1}(c+d x)^3+6 b \tanh ^{-1}(c+d x) \left (a (2 b (c+d x)+a d x (2 c+d x))-2 b^2 \log \left (1+e^{-2 \tanh ^{-1}(c+d x)}\right )\right )+a \left (2 a d x (3 b+2 a c+a d x)-3 a b \left (-1+c^2\right ) \log (1-c-d x)+3 a b \left (-1+c^2\right ) \log (1+c+d x)-12 b^2 \log \left (\frac {1}{\sqrt {1-(c+d x)^2}}\right )\right )+6 b^3 \text {PolyLog}\left (2,-e^{-2 \tanh ^{-1}(c+d x)}\right )\right )}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)*(a + b*ArcTanh[c + d*x])^3,x]

[Out]

(e*(6*b^2*(-1 + c + d*x)*(b + a*(1 + c + d*x))*ArcTanh[c + d*x]^2 + 2*b^3*(-1 + c^2 + 2*c*d*x + d^2*x^2)*ArcTa
nh[c + d*x]^3 + 6*b*ArcTanh[c + d*x]*(a*(2*b*(c + d*x) + a*d*x*(2*c + d*x)) - 2*b^2*Log[1 + E^(-2*ArcTanh[c +
d*x])]) + a*(2*a*d*x*(3*b + 2*a*c + a*d*x) - 3*a*b*(-1 + c^2)*Log[1 - c - d*x] + 3*a*b*(-1 + c^2)*Log[1 + c +
d*x] - 12*b^2*Log[1/Sqrt[1 - (c + d*x)^2]]) + 6*b^3*PolyLog[2, -E^(-2*ArcTanh[c + d*x])]))/(4*d)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 2.89, size = 6414, normalized size = 40.09

method result size
risch \(\text {Expression too large to display}\) \(1297\)
derivativedivides \(\text {Expression too large to display}\) \(6414\)
default \(\text {Expression too large to display}\) \(6414\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)*(a+b*arctanh(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 628 vs. \(2 (148) = 296\).
time = 0.46, size = 628, normalized size = 3.92 \begin {gather*} \frac {1}{2} \, a^{3} d x^{2} e + \frac {3}{4} \, {\left (2 \, x^{2} \operatorname {artanh}\left (d x + c\right ) + d {\left (\frac {2 \, x}{d^{2}} - \frac {{\left (c^{2} + 2 \, c + 1\right )} \log \left (d x + c + 1\right )}{d^{3}} + \frac {{\left (c^{2} - 2 \, c + 1\right )} \log \left (d x + c - 1\right )}{d^{3}}\right )}\right )} a^{2} b d e + a^{3} c x e + \frac {3 \, {\left (2 \, {\left (d x + c\right )} \operatorname {artanh}\left (d x + c\right ) + \log \left (-{\left (d x + c\right )}^{2} + 1\right )\right )} a^{2} b c e}{2 \, d} + \frac {3 \, a b^{2} {\left (c + 1\right )} e \log \left (d x + c + 1\right )}{2 \, d} - \frac {3 \, a b^{2} {\left (c - 1\right )} e \log \left (d x + c - 1\right )}{2 \, d} + \frac {3 \, {\left (\log \left (d x + c + 1\right ) \log \left (-\frac {1}{2} \, d x - \frac {1}{2} \, c + \frac {1}{2}\right ) + {\rm Li}_2\left (\frac {1}{2} \, d x + \frac {1}{2} \, c + \frac {1}{2}\right )\right )} b^{3} e}{2 \, d} + \frac {24 \, a b^{2} d x e \log \left (d x + c + 1\right ) + {\left (b^{3} d^{2} x^{2} e + 2 \, b^{3} c d x e + {\left (c^{2} - 1\right )} b^{3} e\right )} \log \left (d x + c + 1\right )^{3} - {\left (b^{3} d^{2} x^{2} e + 2 \, b^{3} c d x e + {\left (c^{2} - 1\right )} b^{3} e\right )} \log \left (-d x - c + 1\right )^{3} + 6 \, {\left (a b^{2} d^{2} x^{2} e + {\left (2 \, a b^{2} c d + b^{3} d\right )} x e + {\left ({\left (c^{2} - 1\right )} a b^{2} + b^{3} {\left (c + 1\right )}\right )} e\right )} \log \left (d x + c + 1\right )^{2} + 3 \, {\left (2 \, a b^{2} d^{2} x^{2} e + 2 \, {\left (2 \, a b^{2} c d + b^{3} d\right )} x e + 2 \, {\left ({\left (c^{2} - 1\right )} a b^{2} + b^{3} {\left (c - 1\right )}\right )} e + {\left (b^{3} d^{2} x^{2} e + 2 \, b^{3} c d x e + {\left (c^{2} - 1\right )} b^{3} e\right )} \log \left (d x + c + 1\right )\right )} \log \left (-d x - c + 1\right )^{2} - 3 \, {\left (8 \, a b^{2} d x e + {\left (b^{3} d^{2} x^{2} e + 2 \, b^{3} c d x e + {\left (c^{2} - 1\right )} b^{3} e\right )} \log \left (d x + c + 1\right )^{2} + 4 \, {\left (a b^{2} d^{2} x^{2} e + {\left (2 \, a b^{2} c d + b^{3} d\right )} x e + {\left ({\left (c^{2} - 1\right )} a b^{2} + b^{3} {\left (c + 1\right )}\right )} e\right )} \log \left (d x + c + 1\right )\right )} \log \left (-d x - c + 1\right )}{16 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arctanh(d*x+c))^3,x, algorithm="maxima")

[Out]

1/2*a^3*d*x^2*e + 3/4*(2*x^2*arctanh(d*x + c) + d*(2*x/d^2 - (c^2 + 2*c + 1)*log(d*x + c + 1)/d^3 + (c^2 - 2*c
 + 1)*log(d*x + c - 1)/d^3))*a^2*b*d*e + a^3*c*x*e + 3/2*(2*(d*x + c)*arctanh(d*x + c) + log(-(d*x + c)^2 + 1)
)*a^2*b*c*e/d + 3/2*a*b^2*(c + 1)*e*log(d*x + c + 1)/d - 3/2*a*b^2*(c - 1)*e*log(d*x + c - 1)/d + 3/2*(log(d*x
 + c + 1)*log(-1/2*d*x - 1/2*c + 1/2) + dilog(1/2*d*x + 1/2*c + 1/2))*b^3*e/d + 1/16*(24*a*b^2*d*x*e*log(d*x +
 c + 1) + (b^3*d^2*x^2*e + 2*b^3*c*d*x*e + (c^2 - 1)*b^3*e)*log(d*x + c + 1)^3 - (b^3*d^2*x^2*e + 2*b^3*c*d*x*
e + (c^2 - 1)*b^3*e)*log(-d*x - c + 1)^3 + 6*(a*b^2*d^2*x^2*e + (2*a*b^2*c*d + b^3*d)*x*e + ((c^2 - 1)*a*b^2 +
 b^3*(c + 1))*e)*log(d*x + c + 1)^2 + 3*(2*a*b^2*d^2*x^2*e + 2*(2*a*b^2*c*d + b^3*d)*x*e + 2*((c^2 - 1)*a*b^2
+ b^3*(c - 1))*e + (b^3*d^2*x^2*e + 2*b^3*c*d*x*e + (c^2 - 1)*b^3*e)*log(d*x + c + 1))*log(-d*x - c + 1)^2 - 3
*(8*a*b^2*d*x*e + (b^3*d^2*x^2*e + 2*b^3*c*d*x*e + (c^2 - 1)*b^3*e)*log(d*x + c + 1)^2 + 4*(a*b^2*d^2*x^2*e +
(2*a*b^2*c*d + b^3*d)*x*e + ((c^2 - 1)*a*b^2 + b^3*(c + 1))*e)*log(d*x + c + 1))*log(-d*x - c + 1))/d

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arctanh(d*x+c))^3,x, algorithm="fricas")

[Out]

integral((b^3*d*x + b^3*c)*arctanh(d*x + c)^3*e + 3*(a*b^2*d*x + a*b^2*c)*arctanh(d*x + c)^2*e + 3*(a^2*b*d*x
+ a^2*b*c)*arctanh(d*x + c)*e + (a^3*d*x + a^3*c)*e, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e \left (\int a^{3} c\, dx + \int a^{3} d x\, dx + \int b^{3} c \operatorname {atanh}^{3}{\left (c + d x \right )}\, dx + \int 3 a b^{2} c \operatorname {atanh}^{2}{\left (c + d x \right )}\, dx + \int 3 a^{2} b c \operatorname {atanh}{\left (c + d x \right )}\, dx + \int b^{3} d x \operatorname {atanh}^{3}{\left (c + d x \right )}\, dx + \int 3 a b^{2} d x \operatorname {atanh}^{2}{\left (c + d x \right )}\, dx + \int 3 a^{2} b d x \operatorname {atanh}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*atanh(d*x+c))**3,x)

[Out]

e*(Integral(a**3*c, x) + Integral(a**3*d*x, x) + Integral(b**3*c*atanh(c + d*x)**3, x) + Integral(3*a*b**2*c*a
tanh(c + d*x)**2, x) + Integral(3*a**2*b*c*atanh(c + d*x), x) + Integral(b**3*d*x*atanh(c + d*x)**3, x) + Inte
gral(3*a*b**2*d*x*atanh(c + d*x)**2, x) + Integral(3*a**2*b*d*x*atanh(c + d*x), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arctanh(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)*(b*arctanh(d*x + c) + a)^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \left (c\,e+d\,e\,x\right )\,{\left (a+b\,\mathrm {atanh}\left (c+d\,x\right )\right )}^3 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)*(a + b*atanh(c + d*x))^3,x)

[Out]

int((c*e + d*e*x)*(a + b*atanh(c + d*x))^3, x)

________________________________________________________________________________________